DOI:10.11705/j. issn. 1672 - 643X. 2020. 06. 05

超声波辅助法制备纳米 FeS 处理酸性 含铬废水工艺研究

郭旭颖1,姜国亮2,狄军贞2,吕雅欣2,赵文琦2,仝重凯2

(1. 辽宁工程技术大学 理学院, 辽宁 阜新 123000; 2. 辽宁工程技术大学 土木工程学院, 辽宁 阜新 123000)

摘 要: 针对排放酸性含铬废水所产生的环境污染问题,采用超声波辅助法制备纳米 FeS,用于处理酸性含铬废水。通过正交试验确定了超声波辅助法制备纳米 FeS 的最佳制备条件,并讨论了反应时间、pH 值和 Cr(\mathbb{N}) 初始浓度对纳米 FeS 处理酸性含铬废水的影响。结果表明:超声波辅助法制备纳米 FeS 的最佳制备条件为超声波频率 40 kHz、超声波处理时间 10 min、制备反应温度 15 \mathbb{C} ,在此条件下 Cr(\mathbb{N}) 和总铬的去除率分别为 81.03%、63.40%;当反应时间达到 50 min 后,纳米 FeS 对酸性含铬废水的处理效果趋于稳定,酸性条件能促进纳米 FeS 对 Cr(\mathbb{N}) 和总铬的去除;随着 Cr(\mathbb{N}) 初始浓度的升高,纳米 FeS 对 Cr(\mathbb{N}) 和总铬的单位去除量逐渐增大,当 Cr(\mathbb{N}) 初始浓度为 300 mg/L 时,Cr(\mathbb{N}) 和总铬的单位去除量分别可达 486.65 和 383.55 mg/g。可见,超声波制备的纳米 FeS 可以有效去除废水中的铬离子,为今后实际工程应用提供了一定的理论指导。

关键词:超声波辅助法;纳米 FeS;酸性含铬废水;工艺;正交试验

中图分类号: X703.1

文献标识码: A

文章编号: 1672-643X(2020)06-0031-05

Study on the preparation of nano-FeS by ultrasonic assisted method for the treatment of acidic chromium-containing wasterwater

GUO Xuying¹, JIANG Guoliang², DI Junzhen², LÜ Yaxin², ZHAO Wenqi², TONG Chongkai²

(1. School of Sciences, Liaoning Technical University, Fuxin 123000, China;

2. School of Civil Engineering, Liaoning Technical University, Fuxin 123000, China)

Abstract: In view of the environmental pollution caused by the discharge of acidic chromium-containing wastewater, nano-FeS was prepared by ultrasonic assisted method for the treatment of this kind of wastewater. The optimum preparation conditions of nano-FeS were determined by orthogonal test, and the effect of reaction time, pH and initial concentration of Cr(VI) on the treatment of acidic chromium-containing wastewater by nano-FeS was discussed. The results show that the optimum preparation conditions for the preparation of nano-FeS by ultrasonic assisted method are as follows: ultrasonic frequency 40 kHz, ultrasonic treatment time 10 min, preparation reaction temperature 15 $^{\circ}$ C. Under these conditions, the removal rate of Cr(VI) and total chromium is 81.03% and 63.40%, respectively. When the reaction time reaches 50 min, the treatment effect of nano-FeS on acidic chromium-containing wastewater tends to stabilize. Acidic conditions can facilitate the removal of Cr(VI) and total chromium by nano-FeS, as the initial concentration of Cr(VI) increases, the unit removal rate of Cr(VI) and total chromium by nano-FeS gradually increases. When the initial concentration of Cr(VI) is 300 mg/L, the unit removal rate of Cr(VI) and total chromium can reach 486.65 mg/g and 383.55 mg/g. It is found that the nano-FeS prepared by ultrasonic can effectively remove chromium ions from wastewater, which provides some theoretical guidance for practical engineering applications in the future.

Key words: ultrasonic assisted method; nano-FeS; acidic chromium-containing wastewater; preparation

收稿日期:2020-03-08; 修回日期:2020-07-05

基金项目:国家自然科学基金项目(41672247、51304114);辽宁省"兴辽英才"青年拔尖人才计划项目(XLYC1807159); 省级大学生创新训练项目(201810147208)

作者简介:郭旭颖(1977-),女,辽宁阜新人,硕士,副教授,硕士生导师,从事水污染控制理论与技术研究工作。

method; orthogonal test

1 研究背景

煤矿在开采过程中会产生大量的酸性矿山废水,这些废水具有 pH 低、重金属离子浓度高等特点,而未经处理的矿山废水随意排放会对周围的环境造成巨大危害^[1-2]。铬离子作为矿山废水中重金属离子的一种,其主要危害是通过对周围环境的污染和食物链的逐级积累^[3],最终积累在人体中,过多的铬离子会对人的皮肤及器官造成损伤以及引发致癌风险^[4]。因此,铬元素也被美国环保署列为最具毒性的 A 类致癌物质之一^[5]。重金属铬的毒性与其价态有关^[6],据大量研究报告显示 Cr(Ⅵ)在其所有价态中的毒性最强,比 Cr(Ⅲ)的毒性要高出100 多倍^[7]。目前,应用于含铬废水处理的方法主要有化学还原法^[8]、离子交换法^[9]、电解法^[10]、活性炭吸附法^[11-12]以及膜渗析^[13]等技术。

近几年随着纳米技术的发展,纳米材料在处理含铬废水领域中有着更广阔的应用前景[14]。其中,纳米 FeS 由于具有良好的还原性被广泛关注。狄军贞等[15]报道,超声波可以致使大分子物质转化为小分子物质,与传统的共沉淀法制备的纳米 FeS 相比,超声波辅助法制备的纳米 FeS 粒径更为细小、均匀,且可抑制纳米 FeS 的团聚现象,可以显著降低矿山废水中铬离子的浓度。因此,本研究基于正交试验确定了超声波辅助法制备纳米 FeS 的最佳制备条件,并讨论了反应时间、pH 值、Cr(VI)初始浓度对纳米 FeS 处理酸性含铬废水的影响。

2 实验材料与方法

2.1 实验材料和仪器

药品:七水合硫酸亚铁、九水合硫化钠、铬酸钾、 硫酸、磷酸、二苯碳酰二肼、丙酮、高锰酸钾、尿素以 及亚硝酸钠均为分析纯。

模拟酸性含铬废水:将 0.3735g 的 K_2 CrO₄ 溶于 1L 去离子水中,使 Cr(VI) 初始浓度为 100 mg/L,调节废水 pH 为 4。

仪器: F01 - STP 蠕动泵, BS - 224 - S 电子天平, V - 1600PC 可见光光度计, PHS - 3C 精密 pH 计, YW0410 超声清洗机, DZF - 6050AB 真空干燥箱, 80 - 2 低速离心机。

2.2 检测方法

根据《水质 六价铬的测定 二苯碳酰二肼分光

光度法》(GB 7467 – 87)^[16],水中 Cr(VI)浓度采用 二苯碳酰二肼分光光度法测定;总铬浓度采用高锰酸钾氧化 – 二苯碳酰二肼分光光度法测定。

2.3 纳米 FeS 的制备

称取 $3.607\ 2$ g 的 $Na_2S \cdot 9H_2O$ 和 $4.170\ 3$ g 的 $FeSO_4 \cdot 7H_2O$,分别溶于 100 mL 去离子水中。通过蠕动泵以 0.44 mL/s 的流速将 $FeSO_4$ 溶液滴加到 Na_2S 溶液中,采用机械搅拌器以 350 r/min 的转速进行搅拌,并用超声波清洗机进行超声波处理。待超声波处理结束后,将纳米 FeS 的悬浊液以 $4\ 000$ r/min离心 10 min,并用去离子水清洗 3 次。取部分纳米 FeS 样品在 60 ℃条件下真空干燥 12 h,计算含水率,其余样品放人 4 ℃冰箱冷藏,密封保存备用。

2.4 正交试验设计

根据前期单因素实验结果,确定了超声波频率、超声波处理时间以及反应温度是超声波辅助法制备纳米 FeS 的主要影响因素。基于此,通过 $L_9(3^3)$ 正交实验制备纳米 FeS。其中, $L_9(3^3)$ 正交实验的因素水平设置见表 1。将制备的纳米 FeS 添加到 250 mL 的酸性含铬废水中,用磁力搅拌器在 700 r/min 的转速下搅拌 50 min 后,分别检测水样中的 Cr (VI)和总铬浓度。为保证实验的准确性,实验设置两组平行实验,取平均值。以 Cr(VI)和总铬的去除率为评价指标,确定 $L_9(3^3)$ 正交实验中纳米 FeS 的最佳制备条件。

表 1 制备纳米 FeS 的 $L_9(3^3)$ 正交试验因素水平

水平	A:超声波 频率/kHz	B:超声波处理 时间/min	C:反应 温度/℃
1	28	5	10
2	40	10	15
3	28/40	15	20

2.5 反应时间、pH 和 Cr(VI)初始浓度对纳米 FeS 处理酸性含铬废水的影响

基于 $L_9(3^3)$ 正交实验确定的超声波辅助法制备纳米 FeS 的最佳条件,制备纳米 FeS。探究反应时间、pH 和 Cr(VI) 初始浓度对纳米 FeS 处理酸性含铬废水的影响。

(1)反应时间的影响:将 1.2 g 纳米 FeS 投加到 pH = 4、Cr(VI)浓度为 100 mg/L 的 250 mL 酸性含铬废水中,用磁力搅拌器以 700 r/min 的转速进行搅拌。当反应时间为 2、5、10、20、30、40、50、60 min

时,分别检测水样中 $Cr(\mathbf{W})$ 和总铬的浓度,并设置两组平行实验。

(2)pH的影响:将 1.2 g 纳米 FeS 分别投加到 初始 pH 分别为 3.0、4.0、5.0、6.0、7.0、8.0 的 250 mL、Cr(VI)浓度为 100 mg/L 的含铬废水中。用磁力搅拌器在 700 r/min 的转速下搅拌 50 min 后,分别检测水样中 Cr(VI)和总铬的浓度,并设置两组平行实验。

(3) Cr(VI) 初始浓度的影响:将 1.2 g 纳米 FeS 分别投加到 pH = 4、Cr(VI) 浓度分别为 50、100、150、200、250、300 mg/L 的 250 mL 酸性含铬废水中。用磁力搅拌器在 700 r/min 的转速下搅拌 50 min 后,分别检测水样中 Cr(VI) 和总铬的浓度,并设置两组平行实验。

3 结果与分析

3.1 正交实验结果与分析

以超声波频率(A)、处理时间(B)和反应温度

(C)为因素的 $L_9(3^3)$ 正交实验组次及实验结果如表 2 所示,不同因素影响下 Cr(VI) 和总铬去除率比较如表 3 所示。

表 2 $L_0(3^3)$ 正交实验组次及 Cr(VI)和总铬去除率实验结果

组次	A:频率/ kHz	B:处理 时间/min	C:温度/ ℃	Cr(VI) 去 除率/%	总铬去 除率/%
1	28	5	10	74. 25	65.12
2	28	10	15	76.40	66.30
3	28	15	20	69.20	57.20
4	40	5	15	79.65	65.10
5	40	10	20	80.90	68.20
6	40	15	10	74.10	62.30
7	28/40	5	20	73.80	59.20
8	28/40	10	10	78.00	66.10
9	28/40	15	15	71.80	58.50

注:表中组次 7~9 的实验频率为 28/40 kHz,表示实验频率为 28 kHz 与 40 kHz 之间交替进行,每次交替间隔时间为 4 s。

表 3 不同因素影响下 Cr(VI) 和总铬去除率比较

类别	Cr(VI) 去除率/%		总铬去除率/%			
	A:超声频率	B:处理时间	C:温度	A:超声频率	B:处理时间	C:温度
均值1	73. 283	75.900	75.450	62.873	63. 140	64.507
均值2	78.217	78.430	75.950	65.200	66.867	63.300
均值3	74. 533	71.700	74.633	61.267	59.333	61.533
极差(R)	4.934	6.730	1.317	3.933	7.534	2.974

注:表中均值1、2、3分别指表2中的相同超声频率、处理时间和温度条件下的平均去除率。

极差 R 为表示数据离散程度的一个统计量 $^{[17]}$, 通过比较表3中的极差,可以分析出处理时间、超声 频率和温度对超声波辅助法制备纳米 FeS 去除 Cr (Ⅵ)和总铬的影响顺序为处理时间 > 超声频率 > 温度。对超声波辅助法制备纳米 FeS 去除 Cr(VI) 和总铬影响最大的因素是处理时间。这是因为随着 超声波处理时间的增加,超声波的超空化作用使得 液体高频振荡[18],在此条件下制备的纳米 FeS 晶体 更均匀且分散性更强,有效减少了纳米 FeS 的团聚 现象[19]。均值为各因素水平对指标的平均影 响^[20],通过表 3 中均值的大小可以分析出去除 Cr (VI)的最佳组合为 $A_2B_2C_2$, 去除总铬的最佳组合为 A,B,C_1 。考虑到 Cr(VI) 的毒性在其所有价态中最 强,比 Cr(Ⅲ)的毒性要高出 100 多倍^[7]。因此选择 Cr(VI)为优先控制指标,最终确定 A,B,C,为超声 波辅助法制备纳米 FeS 的最优制备条件,即超声频

率 40 kHz,超声时间为 10 min,温度为 15 ℃。

3.2 反应时间对去除效果的影响

通过实验得出的 Cr(VI) 和总铬去除率随反应时间的变化曲线见图 1。由图 1 可知,随着反应时间的增加,纳米 FeS 对 Cr(VI) 和总铬的去除率呈递增趋势。当反应时间为 0 ~ 2 min 时,纳米 FeS 对 Cr(VI) 和总铬的去除率迅速上升;当反应时间达到 50 min 以后,去除率趋于稳定,此时纳米 FeS 对 Cr(VI) 和总铬的去除率分别为 81.03% 和 63.40%。这是由于 FeS 的 pKsp 一般在 3.50 ~ 4.87 之间,溶度积相对较小 $[^{21}]$,在酸性条件下极易溶解,在反应初期酸性含铬废水 pH 为 4,溶液中存在大量的 H^+ ,促使 FeS 发生电离,产生具有强还原性的 Fe^{2+} 和 $S^{2-[22]}$, Fe^{2+} 与 Cr(VI) 发生氧化还原反应并生成 Cr(III),因此反应初期 Cr(VI) 和总铬的去除率迅速上升。在酸性条件下溶液中的反应如下:

$$\begin{aligned} & \operatorname{FeS} + 2\operatorname{H}^{+} = \operatorname{Fe}^{2+} + \operatorname{H}_{2}\operatorname{S} \\ & \operatorname{Cr}_{2}\operatorname{O}_{7}^{2-} + 6\operatorname{Fe}^{2+} + 14\operatorname{H}^{+} = 2\operatorname{Cr}^{3+} + 6\operatorname{Fe}^{3+} + 7\operatorname{H}_{2}\operatorname{O} \end{aligned} \tag{1}$$

(2)

随着反应时间的增加,废水中的 H⁺不断被消耗,废水 pH 逐渐上升至碱性,而 OH⁻ 的存在会阻碍纳米 FeS 在溶液中的电离,反应速率逐渐减缓,所以反应 50 min 后 Cr(VI) 和总铬的去除率趋于稳定。肖文燕^[23]采用 Fe/FeS 晶体处理含铬废水实验所得出的反应平衡时间为 4 h,远高于本实验采用超声波辅助法制备的纳米 FeS 处理含铬废水达到反应平衡所需时间。

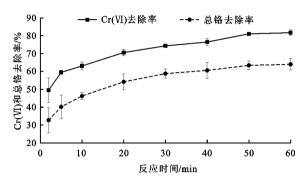


图 1 Cr(VI)和总铬去除率随反应时间的变化曲线

3.3 pH 对去除效果的影响

通过实验得出的 Cr(VI) 和总铬去除率随初始pH 的变化曲线见图 2。由图 2 可知,pH 对纳米 FeS处理酸性含铬废水的影响较大。随着 pH 的逐渐增大,纳米 FeS 对 Cr(VI) 和总铬的去除率均呈下降趋势。当 pH 为 8 时,Cr(VI) 和总铬的去除率到达最低值,分别为 55. 43%、36. 63%。这是由于在酸性条件下,会促进 FeS 的电离,有利于对 Cr(VI) 和总铬的去除。而在碱性环境下,纳米 FeS 绝大部分以固体形态存在,只有少量的 FeS 发生溶解^[21]。同时,OH⁻的大量存在抑制了 Cr(VI) 与 Fe²⁺的氧化还原,溶液中 Fe²⁺以 Fe(OH)₂ 形式存在^[24],使得FeS 对 Cr(VI) 和总铬的去除率大幅度下降。

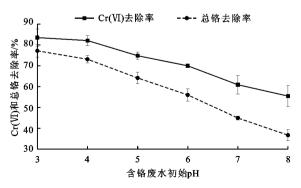


图 2 Cr(VI)和总铬去除率随初始 pH 的变化曲线

而从电化学角度进行分析可以看出在酸性条件 标准电势如下:

$$\Phi^{\theta}$$
 ($\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}$) - Φ^{θ} ($\text{Fe}^{3+}/\text{Fe}^{2+}$) = 0.56V Φ^{θ} ($\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}$) - Φ^{θ} ($\text{S/H}_2\text{S}$) = 1.19V 在碱性条件下标准电势如下:

$$\Phi^{\theta} \left(\text{Cr}_2 \text{O}_4^{\ 2^-} / \text{CrO}^- \right) - \Phi^{\theta} \left[\text{Fe} \left(\text{OH} \right)_3 / \text{Fe} \left(\text{OH} \right)_2 \right] = 0.44 \text{V}$$

$$\Phi^{\theta} \left(\text{Cr}_{2} \text{O}_{4}^{2-} / \text{Cr} \text{O}^{-} \right) - \Phi^{\theta} \left(\text{S/S}^{2-} \right) = 0.36 \text{V}$$

从上面反应式可以看出,酸性条件中的标准电势均大于碱性条件中的标准电势,说明在酸性条件下更有利于纳米 FeS 对 Cr(VI)的去除^[25],因此在pH 为 3 时去除效果最好。

3.4 Cr(VI)初始浓度对去除效果的影响

通过实验得出的 Cr(VI) 和总铬单位去除量随 Cr(VI)初始浓度的变化曲线见图 3。由图 3 可知, Cr(VI) 初始浓度对纳米 FeS 去除 Cr(VI) 和总铬有 很大影响。纳米 FeS 对 Cr(VI) 和总铬的单位去除 量随着 Cr(VI) 初始浓度增加而增大。在 Cr(VI) 的 初始浓度为300 mg/L 时, Cr(VI)和总铬的单位夫 除量最大,分别为 486.65、383.55 mg/g。这是由于 纳米 FeS 具有高比表面积、高吸附性能以及高反应 活性[26], 当纳米 FeS 投加量一定时, 随着 Cr(VI) 初 始浓度的增加,单位体积内活化分子数增加,Cr (VI)和纳米 FeS 的碰撞概率增大,纳米 FeS 与 Cr (Ⅵ)的反应加快,生成 Cr(Ⅲ)的反应速率也大大 加快,当 Cr(Ⅲ)浓度达到 Cr,S,的溶度积常数 时^[27], Cr(Ⅲ) 又源源不断被 FeS 吸附或者通过与 S²⁻相结合生成 Cr,S, 沉淀, 所以导致纳米 FeS 对 Cr (VI)和总铬的单位去除量不断提高。

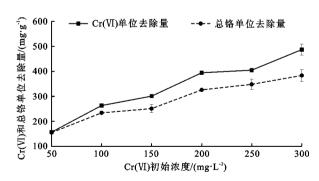


图 3 Cr(VI) 和总铬单位去除量随 Cr(VI) 初始浓度的变化曲线

4 结 论

(1)通过正交试验得出纳米 FeS 的最佳制备条件为:超声波频率为 40 kHz、超声波处理时间为 10 min、制备反应温度为 15 ℃。在此条件下制备的纳

米 FeS 对 Cr(Ⅵ)和总铬的去除率分别可以达到81.03%和63.40%。

(2)当反应时间达到 50 min 后,纳米 FeS 对酸性含铬废水的处理达到平衡阶段。酸性条件能促进纳米 FeS 对 Cr(VI) 和总铬的去除,当废水 pH 为 3 时,纳米 FeS 对 Cr(VI) 和总铬的去除率分别为83.50%、77.17%。随着 Cr(VI) 初始浓度的升高,纳米 FeS 对 Cr(VI) 和总铬的单位去除量逐渐增大。在 Cr(VI) 初始浓度为 300 mg/L 时, Cr(VI) 和总铬的单位去除量可达 486.65 和 383.55 mg/g。

参考文献:

- [1] 秋军贞, 江 富, 朱志涛, 等. Fe~0 协同生物麦饭石的 PRB 系统井下原位处理煤矿酸性废水[J]. 环境工程学报, 2014,8(12):5111-5116.
- [2] 马 尧, 胡宝群, 孙占学. 矿山酸性废水治理的研究综述 [J]. 矿业工程, 2006, 4(3):55-57.
- [3] 蒋丽, 谌建宇, 李小明, 等. 粉煤灰陶粒对废水中磷酸盐的吸附试验研究[J]. 环境科学学报, 2011,31(7): 1413-1420.
- [4] 张双杰, 邢宝林, 黄光许, 等. 核桃壳水热炭对六价铬的吸附特性[J]. 化工进展, 2016, 35(3):950-956.
- [5] 周 栋, 高 娜, 高 乐. 工业含铬废水处理技术研究进展 [J]. 中国冶金, 2017,27(1):2-6.
- [6] KOÇBERBER N, DÖNMEZ G. Chromium (VI) bioaccumulation capacities of adapted mixed cultures isolated from industrial saline wastewater [J]. Bioresource Technology, 2007,98(11):2178 2183.
- [7] 余思伍,牧灏,李军卫,等. 白云石分离环境样品中的六价辂与三价辂[J]. 环境科学学报,2018,38(5):1885-1892.
- [8] 赵玉华, 魏志宇, 王成雨, 等. 化学还原法处理 Cr(VI) 废水沉淀及过滤效能[J]. 沈阳建筑大学学报(自然科学版), 2009,25(4):737-740.
- [9] 张云.新型螯合吸附剂的制备及其对重金属微污染废水的净化处理研究[D]. 兰州:兰州大学,2011.
- [10] 郭雪娥, 罗建中, 何 潇, 等. 电解/超声强化铁炭法处理饮用水源中的 Cr(VI) [J]. 环境工程学报, 2017,11 (4):2150-2156.
- [11] 闵 敏. 超声波对硝酸改性活性炭吸附 Cr(VI)的影响 [J]. 化学与生物工程, 2012, 29(1):81-84.
- [12] 姚书恒,姜小祥,沈德魁,等. 稻壳活性炭对 Cr(VI) 离子吸附过程的机理[J]. 东南大学学报(自然科学版),2015,45(3):515-520.

- [13] 黄 婕, 李 超, 杨俊和. 纳滤膜处理含铬废水溶液的研究[J]. 化学工程, 2013,41(5):64-68.
- [14] 王留锁. 纳米材料处理工业废水的研究进展[J]. 环境保护与循环经济, 2019,39(9):14-17.
- [15] 狄军贞,郭俊杰,董艳荣,等. 超声波强化生物麦饭石 固定化颗粒处理 AMD 试验[J]. 非金属矿,2019,42 (4):90-92.
- [16] 国家环境保护局. 水质 六价铬的测定 二苯碳酰二肼 分光光度法: GB 7467 87[S]. 北京: 标准出版社, 1987.
- [17] 刘亚琴,谢 菁,刘宁宇,等.基于沸石循环的倒置 A/O 工艺对市政污水脱氮效果试验研究[J]. 安全与环境工程,2018,25(6);42-47.
- [18] 徐锁平, 朱广军. 超声波 均匀沉淀法制备纳米氧化 铁[J]. 涂料工业, 2005, 35(2):31 33 + 63.
- [19] LUO P, NIEH T G, SCHWARTZ A J, et al. Surface characterization of nanostructured metal and ceramic particles [J]. Materials Science and Engineering: A, 1995, 204(1-2):59-64.
- [20] LIU Yuanyuan, XIAO Wenyan, WANG Jiajia, et al. Optimized synthesis of FeS nanoparticles with a high Cr(VI) removal capability [J]. Journal of Nanomaterials, 2016 (4):1-9.
- [21] 李冬丽, 张国平, 马超, 等. 化学合成硫化亚铁(FeS) 对三价锑的吸附作用研究[J]. 地球与环境, 2019,47 (5):738-744.
- [22] SKYLLBERG U, DROTT A. Competition between disordered iron sulfide and natural organic matter associated thiols for mercury(II) An EXAFS study[J]. Environmental Science & Technology, 2010, 44 (4): 1254 1259.
- [23] 肖文燕. FeS 和 Fe/FeS 颗粒的制备、表征及用于水中 Cr(VI) 去除的试验研究 [D]. 重庆:重庆大学, 2016.
- [24] 谢翼飞,李旭东,李福德. 生物硫铁纳米材料特性分析及其处理高浓度含铬废水研究[J]. 环境科学, 2009,30(4):1060-1065.
- [25] 赵玉华, 王成雨, 李洋洋, 等. 硫化亚铁处理含 Cr (VI) 废水试验研究[J]. 沈阳建筑大学学报(自然科学版), 2008,24(6):1043-1045+1050.
- [26] 陆红佳,文红丽,刘雄.超声波辅助酸法制备纳米薯 渣纤维素的工艺研究[J].中国粮油学报,2012,27 (4):96-100.
- [27] 石俊仙,鲁安怀,陈 洁. 天然黄铁矿除 Cr(VI)中 Cr₂S₃ 物相的发现[J]. 岩石矿物学杂志,2005,24 (6);539-542.