DOI:10.11705/j.issn.1672-643X.2014.01.29

含气量对粉煤灰混凝土抗冻性能影响的研究

班 瑾,韩明珍,张晶磊,俞 斌,周志云 (上海理工大学环境与建筑学院,上海 200093)

摘 要:采用快速冻融法,控制不同粉煤灰掺量的混凝土的含气量,进行了 50 次抗冻融循环。研究分析表明:在 含气量低于 5% 的时候,粉煤灰混凝土随着含气量的增大,粉煤灰混凝土抗冻性能大幅提高,接近普通硅酸盐混凝 土抗冻性能;含气量大于 5% 一直到 15% 左右,粉煤灰混凝土抗冻性能高于普通硅酸盐混凝土。

关键词:粉煤灰掺量;水冻;含气量;冻融循环

中图分类号:TU528 文献标识码: A 文章编号: 1672-643X(2014)01-0137-03

Research on influence of air content on frost resistance of fly ash concrete

BAN Jin, HAN Mingzhen, ZHANG Jinglei, YU Bin, ZHOU Zhiyun

(*College of Environment and Architecture*, *University of Shanghai for Science and Technology*, *Shanghai* 200093, *China*) **Abstract**: By adopting the quick freezing and thawing method and controling the air content of concrete in different amount of fly ash, the paper carried out 50 times of freeze-thaw cycle. The result shows that with the increase of air content of fly ash concrete, its frost-resistance greatly increase and close to the frost - resistance of silicate cement concrete when air content is lower than 5%; when air content is from 5% to 15%, its frost-resistance is higher than that of silicate cement concrete.

Key words: amount of fly ash ; water-freezing; air content; freeze-thaw cycle

位于我国北方地区的钢筋混凝土桥梁、公路路 面及海洋平台混凝土结构、水工大坝迎水面和溢流 坝面等,由于冻融循环作用,桥梁、公路路面、海洋平 台等均会发生冻融破坏,混凝土保护层剥落钢筋外 露的情况^[1-3]。巴恒静等人在混凝土抗盐冻性能影 响因素的研究中指出粉煤灰具有微集料效应,能够 填充到粗细骨料及水泥颗粒的孔隙之中,堵塞毛细 孔,提高混凝土的密实度,从而提高混凝土的抗冻性 能^[4]。杨全兵在混凝土盐冻破坏内部饱和水的研 究中提出在混凝土中通过掺加引气剂等方法,引入 大量均匀、稳定的微小气泡,可以有效的改善混凝土 的空隙结构,提高路混凝土的抗冻性能^[5]。

基于以上原因,进行了掺加引气剂的粉煤灰混凝土抗冻性能的研究,研究了不同粉煤灰掺量,不同 含气量对粉煤灰抗冻性能的影响,以及粉煤灰混凝 土 50 次冻融循环后相对动弹模量及相对抗压强度 与含气量的关系式。

1 实验概况

1.1 试件制作

本实验制作试件尺寸为 100 mm × 100 mm ×

100 mm,粉煤灰掺量为 15% 和 30% 的粉煤灰混凝 土,及普通硅酸盐混凝土。通过调整引气剂的掺量, 使每组含气量在 0% ~16% 范围内分布,水泥采用 强度等级42.5的普通硅酸盐水泥,细骨料为普通河 砂,颗粒级配属于级配二区,粗骨料为碎石,最大粒 径 35 mm,水为自来水,粉煤灰为一级粉煤灰,引气 剂为 JDU -2 聚羧酸引气剂,减水剂为 YSP -1 型奈 系高效减水剂。混凝土配合比及测定含气量见表 一。试件脱模后,在湿度 95%,温度 20℃恒温养护 箱内养护 90 d。

1.2 实验设备

本实验采用中国建筑科学研究院建筑材料研究 所与沈阳建工仪器厂共同研制的 CABR – HDK9A 型快速冻融试验机。含气量测定仪:采用上海土木 公路仪器有限公司生产的 SHLA – 316 直读式精密 混凝土含气量测定仪,见图 1。

动弹模量超声波测试仪:采用美国 NDT JAMES B-METER MARK Ⅲ混凝土超声波测试仪见图 2。

试验加载仪器采用上海新三思计量仪器制造有限公司生产的 STH 系列微机控制电液伺服万能试

收稿日期:2013-07-18; 修回日期:2013-08-13 基金项目:上海市研究生创新基金项目(JWCXSL1302) 作者简介:班 瑾(1990-),女,山东菏泽人,在读研究生,研究方向:混凝土冻融。 通讯作者:韩明珍(1989-),女,山东章丘人,在读研究生,研究方向:混凝土冻融。 验机,整个试验过程可通过微机控制并进行数据自动存储。

	表1	混凝土配合比及测定含气量		r 气量	kg/m ³ , %		
水泥	粉煤加 掺量	灰 水	砂子	石子	减水剂	引气剂	含气量
300	0	150	616	1136	2.25	0	2.6
300	0	150	616	1136	2.25	0.06	3.5
300	0	150	616	1136	2.25	0.12	3.80
300	0	150	616	1136	2.25	0.24	4.60
300	0	150	616	1136	2.25	0.03	4.70
300	0	150	616	1136	2.25	0.71	6.50
300	0	150	616	1136	2.25	0.92	16.0
255	45	150	616	1136	2.25	0	2.7
255	45	150	616	1136	2.25	0.03	3.8
255	45	150	616	1136	2.25	0.06	3.9
255	45	150	616	1136	2.25	0.12	4.7
255	45	150	616	1136	2.25	0.24	4.8
255	45	150	616	1136	2.25	0.36	6.2
255	45	150	616	1136	2.25	0.96	12.0
210	90	150	616	1136	2.25	0	3.5
210	90	150	616	1136	2.25	0.03	3.9
210	90	150	616	1136	2.25	0.06	4.1
210	90	150	616	1136	2.25	0.12	4.5
210	90	150	616	1136	2.25	0.24	5.0
210	90	150	616	1136	2.25	0.42	6.5
210	90	150	616	1136	2.25	0.58	15.0

1.3 实验方法

按照混凝土快冻试验方法的要求,对养护完成

图1 含气量测定仪

图 2 超声波动弹模量检测仪

由图 6 看出在含气量低于 5% 的情况下,混凝 土试块的动弹损失均较小,动弹模量的损失随粉煤 灰掺量的增加而加大,相对动弹模量低于普通硅酸 盐混凝土,粉煤灰掺量越高,相对动弹模量越低,抗 冻性能越差。含气量在 5% ~15% 的范围内,相对 动弹模量增长到一定程度增长缓慢,粉煤灰混凝土 相对动弹模量高于普通硅酸盐混凝土,且粉煤灰掺 量越高,相对动弹模量越高,抗冻性能越好。将含气 量在 8% 以内的曲线做趋势线,得出结论见图 7。

普通硅酸盐混凝土 50 次冻融后,在含气量低于

的试块进行 50 次冻融循环试验,测试其初始及冻融 后动弹性模量和抗压强度。

2 实验结果与分析

2.1 实验现象和机理分析

混凝土试件在冻融循环开始后,试件表面逐渐 出现裂纹(图3),随着冻融次数的增大,试件原本 光滑的水泥浆表层变得粗糙,开始出现轻微剥落,进 而细骨料外露,至冻融50次后,甚至于一些试件粗 骨料外露(图4),并且在含气量较高的混凝土试块 中,剥蚀现象较轻,而未加引气剂或者含气量较低的 混凝土试块剥蚀较严重。

2.2 动弹模量和含气量及粉煤灰掺量的关系

由图 5 看出,含气量在 5% 以内时,粉煤灰掺量 的变化对混凝土试块的初始动弹模量影响较小,含 气量达到 4.1% ~5% 范围,动弹模量达到最大,其 中粉煤灰掺量 30% 的混凝土动弹模量最高,这是因 为随着含气量的增大,混凝土内部空隙增多,在低范 围内气泡均匀细密,改善了混凝土内部结构,动弹模 量增加^[6]。同时粉煤灰具有微集料效应可以填充 在混凝土粗细骨料之间或者水泥空隙中,使混凝土 内部紧实,提高了混凝土的动弹模量。而含气量超 过 5% 以后,动弹模量随着含气量的增大而开始下 降,粉煤灰掺量越大对动弹模量的影响越大。这是 因为含气量的增大,气泡过多,混凝土内部的空隙结 构受到破坏,动弹模量开始降低^[7]。

图 4 粗骨料外露试件

8%时,相对动弹性模量与含气量公式为:

出现裂纹试件

图 3

y = -48192x³ + 5962.4x² - 213.69x - 2.816 粉煤灰掺量 15% 混凝土 50 次冻融后,在含气 量低于 8% 时,相对动弹性模量公式为:

 $y = -33794x^3 + 4802.2x^2 - 199.59x + 2.9175$

粉煤灰掺量 30% 混凝土 50 次冻融后,在含气量低于 8%时,相对动弹性模量公式为:

 $y = -134378x^3 + 19725x^2 - 901x + 13.203$

2.3 抗压强度和含气量及粉煤灰掺量的关系

由图8看出,粉煤灰混凝土抗压强度明显低于普

通硅酸盐混凝土,粉煤灰含量越高,抗压强度越低^[8]。 随着含气量的变化,混凝土的抗压强度峰值应力在 5%左右达到最高,随后随着含气量的增加而大幅度 降低,这是因为含气量过高,混凝土内部孔隙过大,破 坏了混凝土内部结构,造成混凝土强度降低^[6]。

由图9看出,粉煤灰混凝土在50次冻融循环

后,在含气量5%以内,其相对抗压强度明显低于普 通硅酸盐混凝土。然而在含气量增加到5%以上, 粉煤灰混凝土的相对抗压强度开始大幅度增加,且 粉煤灰掺量越高,相对抗压强度越高,抗冻性能越 好,明显优于普通硅酸盐混凝土。

由图 10 得出含气量在 8% 以内时的相对抗压

强度趋势线。

普通硅酸盐混凝土冻融 50 次后,在含气量低于 8%时,相对抗压强度与含气量公式:

 $y = -23044x^3 + 2900x^2 - 101.86x + 1.638$

粉煤灰掺量 15% 混凝土冻融 50 次后,在含气量低于 8%时,相对抗压强度与含气量公式:

 $y = -38825x^3 + 5382.8x^2 - 224.73x + 3.44$

粉煤灰掺量 30% 混凝土冻融 50 次后,在含气量低于 8% 时,相对抗压强度与含气量公式:

 $y = 41625x^3 - 5521.5x^2 + 252.29x - 3.5193$

3 结 语

(1)50次冻融循环后,在含气量低于5%时,混凝 土的相对动弹性模量逐渐增大,粉煤灰混凝土的相对 动弹模量比普通硅酸盐混凝土的低,抗冻性能差,且 粉煤灰掺量越高,抗冻性能越差,而含气量高于5% 之后,混凝土的相对动弹性模量趋于平缓,粉煤灰混 凝土的相对动弹性模量高于普通硅酸盐混凝土,抗冻 性能较好。且粉煤灰掺量越高,抗冻性能越好。

(2)50次冻融循环后,在含气量低于5%时,混 凝土的相对抗压强度逐渐增大,粉煤灰混凝土的相 对动弹模量比普通硅酸盐混凝土的低,抗冻性能差, 且粉煤灰掺量越高,抗冻性能越差,而含气量高于 5%之后,混凝土的相对动弹性模量趋于平缓,粉煤 灰混凝土的相对动弹性模量大幅提高,高于普通硅 酸盐混凝土,抗冻性能较好。且粉煤灰掺量越高,抗 冻性能越好。

参考文献:

- [1] 冯乃谦,邢锋.混凝土与混凝土结构的耐久性[M].北 京,机械工业出版社,2009.
- [2] 李中华. 寒冷地区道路混凝土抗盐冻剥蚀性能研究 [D]. 哈尔滨:哈尔滨工业大学,2009.
- [3] 杨全兵. 混凝土盐冻破坏—机理、材料设计与防治措施 [D]. 上海:同济大学,2006.
- [4] 巴恒静,李中华,关辉. 混凝土抗盐冻性能影响因素的 研究[J]. 混凝土,2008(11):1-3.
- [5] 杨全兵. 盐及融雪剂种类对混凝土剥蚀破坏影响的研究[J]. 建筑材料学报,2006,9(4):464-467.
- [6] John J Valenza II, George W. Scherer. A Mechanism for Salt Scaling [J]. The American Ceramic Society, 2006, 89 (4):1161-1179.
- [7] Valenza II J J, Scherer A W. Mechanism of salt scaling
 [J]. Materisls and Structures 2005, 38:479 488.
- [8] 陈 萌,刘立新,彭少民. 预拌混凝土各龄期抗拉和抗压 强度换算关系实验研究[J]. 建筑结构,2010(2):109 -111.