DOI:10.11705/j.issn.1672-643X.2018.02.21

矿渣堆积对小流域行洪能力影响的数值模拟研究

李桂伊¹,侯精明¹,高波²,韩浩¹,马利平¹ (1. 西安理工大学西北旱区生态水利工程国家重点实验室,陕西西安710048; 2.中国地质调查局西安市地质调查中心,陕西西安710054)

摘 要: 矿山开采过程中废弃矿渣堆积对流域水文过程有着一定的影响作用。建立了基于水动力方法的二维雨洪 过程数值模型,分析5种不同重现期暴雨下矿渣堆积引起的地形改变对于大西岔流域行洪能力的影响。研究发 现:矿渣堆积对于流域出口断面具有一定滞洪效果;5种不同降雨重现期中,10年一遇降雨时洪峰削减效果最为显 著,当降雨重现期小于10年一遇时,地形对洪峰大小、到达时间起主要影响作用,反之,降雨成为主要影响因素;洪 峰削减率随着断面向下游移动而逐渐增大。研究成果对于降低矿渣堆积流域下游洪水风险具有一定积极意义。 关键词: 矿渣堆积;数值模拟;水文过程;行洪能力;滞洪削峰

中图分类号:TV121⁺.4; P333 文献标识码: A 文章编号: 1672-643X(2018)02-0127-05

Numerical simulation of slag heap effects on flood capacity in small catchment

LI Guiyi¹, HOU Jingming¹, GAO Bo², HAN Hao¹, MA Liping¹

(1. State Key Laboratory of Eco – hydraulics in Northwest Arid Region of China, Xi´an University of Technology, Xi´an 710048, China;
 2. Xi´an Geological Survey Center of China Geological Survey, Xi´an 710054, China)

Abstract: The waste slag heap of mining could exert considerable effects on the hydrological process of a catchment. In this paper, a 2D numerical model of rainfall – runoff process based on a hydrodynamic approach was established to investigate the effects of the terrain change as a result of the slag heap on flood capacity in the Daxicha drainage basin, under the design storms with 5 different return periods. It is found that: the slag heap is able to attenuate the flood peak at the export sections. In the return period of five different types of rainfall, the storm with 10 – year return period causes the most significant attenuation for flood peak, while for the storm with the return period less than 10 years, the terrain plays a more important role for the flood peak value and the arrival time, on the contrary, rainfall has become a major factor. The attenuation rate of the flood peak will increase as the section moves downstream. The research could help mitigate the flood risk in the flood plain downstream of the catchment with slag heaps.

Key words: slag heap; numerical simulation; hydrological process; flood capacity; flood attenuation

1 研究背景

在矿山开采过程中会产生大量的废弃矿渣,若 随意堆积在沟谷中容易产生滑坡、泥石流等地质灾 害,但全部运输出山谷则成本过高,因而矿渣的处理 成为制约矿产业健康发展的重要问题。目前对于矿 渣治理的研究更多是从防止堆积矿渣产生地质灾害 的角度,采用实地调查、模型实验、土力学模型和经验公式进行矿渣启动机理分析,如:徐友宁等^[1]对 潼关金矿区的矿渣堆数目、方量、稳定性以及泥石流 隐患进行实地调研,并提出对应的工程治理措施;常 鸣等^[2]运用经验公式从地形、水文、静动力及物源 条件的角度定性分析泥石流运动模式;林玫玲等^[3] 采用 PFC^{2D}颗粒流软件模拟分析了矿渣型泥石流从

收稿日期:2017-10-28; 修回日期:2017-12-07

基金项目:国家重点研发计划项目(2016YFC0402704);国家自然科学基金项目(19672016);秦岭及宁东矿产资源集中 开采区地质环境调查项目(DD20160336)

作者简介:李桂伊(1991-),男,陕西西安人,硕士,研究方向为一、二维水动力数值模型应用研究。

通讯作者:高波(1982-),男,山西长治人,硕士,从事地质灾害防治与风险评价等方面的研究。

启动到暴发过程中颗粒内部的力学特征。然而从流 域产汇流角度研究分析粗颗粒矿渣堆积引起的地形 改变对于下游流域防洪的影响的研究尚属少见。

本文采用由西安理工大学与英国纽卡斯尔大学 联合开发的二维水动力模型^[4]GAST(GPU accelerated surface water flow and associated transport)建立 大西岔流域雨洪径流模型,对比分析不同重现期降 雨条件下,矿渣堆积前后沟谷各个断面的流量变化 情况,研究矿渣堆积引起的地形变化对小流域行洪 能力的影响,以期为矿渣的分类利用提供参考。

2 模型基本原理简介

2.1 控制方程

控制方程服从二维浅水方程^[8],考虑降雨和下 渗,忽略黏性项、风应力和科氏力,其矢量守恒格式 如下:

$$\frac{\partial q}{\partial t} + \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} = S, \ q = \begin{bmatrix} h \\ q_x \\ q_y \end{bmatrix},$$

$$f = \begin{bmatrix} uh \\ uq_x + gh^2/2 \\ uq_y \end{bmatrix}, \ g = \begin{bmatrix} vh \\ vq_x \\ vq_y + gh^2/2 \end{bmatrix}$$
(1)
$$S = S_b + S_f = \begin{bmatrix} i \\ -gh\partial z_b/\partial x - C_f u \sqrt{u^2 + v^2} \\ -gh\partial z_b/\partial y - C_f v \sqrt{u^2 + v^2} \end{bmatrix}$$
(2)

式中:x,y,t分别为笛卡尔空间坐标、时间坐标,m、 s;q 表征每个网格上的变量矢量; $f \approx a g$ 分别为每个 网格x,y方向上的通量矢量,包括水深h、两个方向 上的单宽流量 $q_x \approx q_y,m_xm^2/s; u,v$ 分别表示x,y方 向上的流速,m/s;S 为源项矢量,包括摩阻力源项 S_b 和底坡源项 S_f ; i 为降雨强度,mm/h; z_b 为河床底面 高程,m,表征实际地形的高低起伏,作为边界条件 参与方程求解;谢才系数 $C_f = (gn^2)/h^{1/3},m^{1/2}/s,$ 其 中n为曼宁系数,是反映地形边壁粗糙度、边界形状 以及其他因素影响的综合性经验系数,g为重力加 速度, m/s^2 。

2.2 数值方法

本文建立了耦合分布式水文和水动力过程的雨 洪数值模型,采用 Godunov 格式有限体积法^[6]进行 空间离散,为稳健地处理非连续问题,通量格式采用 HLLC 格式近似黎曼求解器^[7]。干湿动边界处理在 采用精度格式自适应方法^[7]的基础上对动边界处 网格的水深、单宽流量和底坡变量进行静水重 构^[5],使得在复杂地形上满足全稳条件。时间积分 采用二阶显式 Runge Kutta 方法,从而构造具有二阶 时间和空间精度的稳健算法,可有效提高模型计算 的精度和稳定性。同时引入 GPU 并行技术^[8]来加 速计算,以提高模型计算效率,使得在单机上可进行 大规模计算。在文献[6]中,该模型应用于某小流 域的计算结果与实测结果比对,验证了其计算精度。

3 模型构建

3.1 研究区域概况

大西岔小流域位于陕西、河南两省交接的小秦 岭金矿区西段北坡(图1),为我国著名的四大黄金 产区之一^[1]。大西岔沟为典型的粗颗粒矿渣堆积 小流域,在地貌上,大西岔沟沟谷堆积着大量矿山开 挖的废弃矿渣,95%以上为粒径大于1 mm 的粗颗 粒;水文条件上,区域内多年平均降水量为645.8 mm,降雨量较大;地形条件上,主沟床平均纵比降为 32.7%,地形陡峭。因此选取大西岔流域作为研究 不同降雨条件下矿渣堆积对沟道行洪能力的影响规 律具有代表性。

3.2 模型参数设置

模型边界条件设置为自由出流的开边界,CFL 数为0.5,输入地形、糙率、入渗和降雨数据,模拟历 时为6h,每隔0.5h输出一次结果文件。

3.2.1 地形数据 研究区域流域面积为1.89 km²,地形采用实测3m精度的DEM地形数据,分 为无堆渣地形数据和有堆渣地形数据(图2)。依据 卫星影像(图1)将研究区域分为山坡林地和沟道碎 石两种土地利用类型,并依据相关标准及文献 [11],选取林地和碎石土的曼宁系数分别为0.4、 0.03,稳定下渗率分别为6和2mm/h。

3.2.2 降雨数据 模型设置降雨输入采用不同重 现期设计暴雨。根据当地水文手册(渭南地区暨铜 川市实用水文手册),流域面积小于 50 km² 的区域 设计暴雨历时为1~3 h,本文计算了设计历时为1 ~3 h 的设计面暴雨量,并按照渭铜地区设计暴雨 时程分配雨型表进行暴雨时程分配,得到5 种重现 期下(5、10、20、50、100 年)降雨历时为3 h 的设计 暴雨过程(图3)。

4 模拟结果对比及讨论

地质勘察报告表明:大西岔矿渣 95% 以上为粒 径大于1 mm 的粗颗粒,不易参与泥石流过程。经 过近几年的治理,各个矿渣堆坡度基本均小于 30°, 稳定性较好。因此本文基于堆积体稳定的假设下, 模拟分析矿渣堆积引起的地形变化对大西岔流域产 汇流过程的影响。

图4给出了5、20、100年一遇3种典型重现期 暴雨下大西岔流域有、无堆渣的最大水深分布情况, 对比不同重现期的水深分布,可以看出随着降雨量 的增加,相应的地表径流量增加,研究区域的下游最 大水深明显增大;对比相同重现期原始地形与堆渣 地形的水深分布,可见在3种重现期降雨下,4个矿 渣堆积区水深均相应有所增大,对水流产生一定程 度的阻滞作用。

图 3 不同重现期设计暴雨过程

4.1 流域出口断面径流量分析

如图 5 所示,给出了矿渣堆积前后 5 种不同重 现期的流域出口断面流量过程。研究发现:不同重 现期降雨下,矿渣堆积后洪水起涨时间延迟约 1 h, 洪水退水过程也有所延迟,矿渣堆积具有滞洪效果, 分析认为矿渣减小了行洪通道面积,增大了行洪阻 力,从而显示出滞洪效果。5、10、20、50、100 年一遇 降雨情况下,洪峰流量分别减少了 5.09、7.52、 8.65、8.94、8.16 m³/s,洪峰削减率为 30.94%、 32.04%、28.09%、23.33%、17.30%,10 年一遇降 雨时,洪峰削减效果最为显著,在小于 10 年一遇降 雨时,洪峰削减效果最为显著,在小于 10 年一遇降 雨时,洪峰削减效果最为显著,在小于 10 年一遇降 雨时,洪峰削减效果最为显著,在小于 10 年一遇降 堆积引起的地形改变对洪峰到达时间起主要影响作 用,随着雨强增大,降雨成为影响洪峰到达时间的主 要因素。分析认为由于在沟谷堆放的矿渣束窄了行 洪通道,增大了行洪阻力,对于不易参与泥石流过程 的粗颗粒矿渣堆,在采取工程措施保证堆渣稳定的 前提下,堆渣的阻滞作用对径流产生滞洪削峰的效 果,对于减轻下游流域洪水风险具有一定积极意义。

4.2 矿渣断面流量过程分析

从上游到下游,在长度近1000 m 的谷底分布 着大量矿渣,经过数年的工程治理^[14],主要对沟内 方量较大的矿渣堆进行就地封存,对沟内方量较大、 堆积较高的矿渣堆进行削坡,将堆积坡度超过 30° 的渣堆全部削减到坡度不超过 30°,提高矿渣堆的 稳定性和抗水冲击能力。在4个具有代表性的主要 矿渣堆上依次截取4个断面(图1),分析各个堆渣 对流域径流过程的影响。以50年一遇降雨为例,矿 渣堆积后1、2、3、4号断面的洪峰流量分别减少了 1.77、3.00、5.36、7.51 m³/s(表1),洪峰削减率分 别为 13.30%、16.30%、18.20%、20.33%,洪峰削 减率随着断面向下游移动逐渐增大,各个堆渣削减 效果层层叠加。同时5、10、20、100年一遇降雨下的 4 各断面径流均反映以上规律。分析认为从上游到 下游堆渣数目越来越多,对水流的阻滞作用逐步累 积,相应的洪峰削减效果逐步累加。

矿渣堆积前后5种不同重现期下流域出口断面流量过程

t / h

图 5

t / h

表1 各个堆渣断面洪峰峰值情况										m ³ /s	
断面	5年一遇		10年一遇		20 年	20年一遇		50年一遇		100 年一遇	
	Q_a	Q_b	Q_a	Q_{b}	Q_a	Q_{b}	Q_a	Q_{b}	Q_a	Q_b	
1	5.09	4.95	7.54	6.93	9.99	8.73	13.33	12.96	16.29	15.70	
2	7.37	6.53	10.88	9.48	13.90	10.71	18.41	15.40	21.02	20.00	
3	12.16	9.31	17.03	13.30	22.39	16.96	29.45	24.09	35.06	29.53	
4	14.44	10.64	21.12	14.96	28.77	21.51	36.96	29.45	44.17	36.68	

5 结 论

本文采用基于水动力学的雨洪数值模型,以矿 渣堆积典型小流域大西岔为研究对象,计算了5种 不同重现期暴雨下,矿渣堆积引起的地形改变对流 域行洪能力的影响,得出以下结论:

注: Q_a 为无堆渣时断面峰值流量, Q_b 为有堆渣时断面峰值流量。

(1)矿渣堆积后,流域出口洪水起涨时间和洪水退水过程均有所延迟,显示出一定的滞洪效果。

(2)5、10、20、50、100年一遇降雨情况下,流域 出口断面洪峰削减率分别为 30.94%、32.04%、 28.09%、23.33%、17.30%,10年一遇降雨时洪峰 削减效果最为显著。

(3)当小于10年一遇降雨时,地形对洪峰大 小、到达时间起主要影响作用,反之,降雨成为主要 影响因素。

(4)洪峰削减率随着断面向下游移动而逐步增 大,各个堆渣对洪峰削减效果层层叠加。

鉴于粗颗粒矿渣堆积引起的地形改变对下游流域 能够产生滞洪削峰效果,对减轻下游流域洪水风险具 有一定积极意义。这一结论给类似的矿渣治理工程提 供了相应的借鉴,将不易参与泥石流的粗颗粒矿渣堆 积在沟谷,并采用削坡、铅丝笼加固等工程措施保证堆 渣体稳定^[15],可起到一定的滞洪削峰作用。后续将对 不同沟道比降的流域中的不同矿渣堆堆放位置、不同 暴雨雨型及重现期的滞洪削峰效果展开进一步研究。

参考文献:

- [1] 徐友宁,陈社斌,何 芳,等. 潼关金矿区矿渣型泥石流灾 害及防治对策[J]. 山地学报,2006,24(6):667-671.
- [2] 常鸣, 唐川. 基于水动力的典型矿山泥石流运动模式 研究[J]. 水利学报, 2014, 45(11): 1318 - 1326.
- [3] 林玫玲, 简文彬, 胡海瑞, 等. 基于离散元的矿渣泥石流运动过程研究[J]. 中国地质灾害与防治学报, 2017, 28
 (2):10-14+120.
- [4] HOU Jingming, LIANG Qiuhua, SIMONS F, et al. A stable 2D unstructured shallow flow model for simulations of wetting and drying over rough terrains [J]. Computers & Flu-

ids,2013,82(17):132-147.

- [5] HOU Jingming, LIANG Qiuhua, ZHANG Hongbing, et al. An efficient unstructured MUSCL scheme for solving the 2D shallow water equations [J]. Environmental Modelling & Software, 2015, 66(C):131 - 152.
- [6] HOU Jingming, ÖZGEN I. A model for overland flow and associated processes within the hydroinformatics modelling system [J]. Journal of Hydroinformatics, 2014, 16(2):375-391.
- [7] HOU Jingming, SIMONS F, MAHGOUB M, et al. A robust well – balanced model on unstructured grids for shallow water flows with wetting and drying over complex topography
 [J]. Computer Methods in Applied Mechanics & Engineering, 2013, 257(15):126 - 149.
- [8] LIANG Qiuhua, XIA Xilin, HOU Jingming. Catchmentscale high-resolution flash flood simulation using the GPUbased technology[J]. Procedia Engineering, 2016, 154:975 -981.
- [9] SMITH L S, LIANG Qiuhua. Towards a generalised GPU/ CPU shallow – flow modelling tool [J]. Computers & Fluids, 2013,88(12):334 – 343.
- [10] LIANG Qiuhua, MARCHE F. Numerical resolution of well - balanced shallow water equations with complex source terms[J]. Advances in Water Resources, 2009, 32(6): 873-884.
- [11] ENGMAN E T. Roughness coefficients for routing surface runoff[J]. Journal of Irrigation & Drainage Engineering, 1986,112(1):39-53.
- [12] 李贵玉. 黄土丘陵区不同土地利用类型下土壤入渗性 能对比研究[D]. 杨凌: 西北农林科技大学. 2007.
- [13] 渭南地区水利水土保持局. 渭南地区暨铜川市实用水 文手册[M]. 渭南: 渭南地区暨铜川水利局水土保持 局,1973.
- [14] 方茜娟,任军旗,郭书科. 矿山泥石流形成条件综述 [J]. 岩土工程界,2008,11(5):66-67.
- [15] 孙新国,彭勇,周惠成. 基于 SWAT 分布式流域水文模型的下垫面变化和水利工程对径流影响分析[J].水资源与水工程学报,2016,27(1):33-39.
- [16] 黄 沛,张秋文. 几种典型流域水文模型类比分析[J]. 水资源与水工程学报,2006,17(5):27-30.